Two Antinematodal Phenolics from *Knema hookeriana*, a Sumatran Rainforest Plant

Yohannes Alen^{a,b,c}, Shuhei Nakajima^{a,b,*}, Teruhiko Nitoda^b, Naomichi Baba^{a,b}, Hiroshi Kanzaki^{a,b} and Kazuyoshi Kawazu^b

- The Graduate School of Natural Science and Technology, Department of Applied Bioscience and Biotechnology, Laboratory of Natural Products Chemistry, Okayama University, Tsushima naka 3-1-1, Okayama 700-8530, Japan. E-mail: snaka24@ccews2.cc.okayama-u.ac.jp
 Faculty of Agriculture, Okayama University, Tsushima naka 1-1-1, Okayama 700-8530, Japan
- ^c On Leave from Laboratory of Natural Products Chemistry, Department of Pharmacy, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
- * Author for correspondence and reprint requests

Z. Naturforsch. **55 c**, 300–303 (2000); received December 29, 1999/January 28, 2000

Antinematodal Compounds, Knema hookeriana, Bursaphelenchus xylophilus

The activity-guided chromatographic purification of the methanol extract of *Knema hookeriana*, using pine wood nematodes *Bursaphelenchus xylophilus* has successfully led to the isolation and characterization of two phenolic antinematodal compounds with minimun effective dose (MED) of 4.5 and 20 µg/cotton ball (µg/ bl.) or 0.018 and 0.073 µm/cotton ball (µm/bl.), respectively. Based on their chemical and spectral properties, these compounds were determined to be 3-undecylphenol (1) and 3-(8Z-tridecenyl)-phenol (2). These compounds were isolated for the first time from this species, and 2 seems to be a novel compound.